
LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

May 1, 2003 

 

The Fourth Georgia Tech and Universit
International Conference on Bioinforma
November 13-16, 2003 

D. Rocco and T. Critchlow 

An Abstract Descrip
Approach to the Dis
and Classification o
Bioinformatics Web

 

UCRL-JC-152980
y of Georgia 
tics, Atlanta, Georgia, 

tion 
covery 
f 
 Sources



This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 

Updated October 14, 2003 



An Abstract Description Approach to the Discovery and
Classification of Bioinformatics Web Sources

�

Daniel Rocco
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

Terence Critchlow
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551

Abstract

Motivation: The World Wide Web provides an incredible resource to genomics researchers in the form
of dynamic data sources—e.g. BLAST sequence homology search interfaces. The growth rate of these
sources outpaces the speed at which they can be manually classified, meaning that the available data is
not being utilized to its full potential. Existing research has not addressed the problems of automatically
locating, classifying, and integrating classes of bioinformatics data sources.
Results: This paper presents an overview of a system for finding classes of bioinformatics data sources
and integrating them behind a unified interface. We examine an approach to classifying these sources au-
tomatically that relies on an abstract description format: the service class description. This format allows a
domain expert to describe the important features of an entire class of services without tying that description
to any particular Web source. We present the features of this description format in the context of BLAST
sources to show how the service class description relates to Web sources that are being described. We then
show how a service class description can be used to classify an arbitrary Web source to determine if that
source is an instance of the described service. To validate the effectiveness of this approach, we have con-
structed a prototype that can correctly classify approximately two-thirds of the BLAST sources we tested.
We then examine these results, consider the factors that affect correct automatic classification, and discuss
future work.
Contact: rockdj@cc.gatech.edu; critchlow1@llnl.gov

�

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-48.



1 Introduction

The World Wide Web provides a mechanism for un-
precedented information sharing among researchers.
Today, scientists can easily post their research find-
ings on the Web or compare their discoveries with
previous work, often spurring innovation and fur-
ther discovery. The value of accessing data from
other institutions and the relative ease of dissem-
inating this data has increased the opportunity for
multi-institution collaborations, which produce dra-
matically larger data sets than were previously avail-
able and require advanced data management tech-
niques for full utilization.

As a side effect of these types of collaborations,
some tools become de facto standards in the commu-
nities as they are shared among a large number of
institutions. For instance, consider the BLAST [1]
family of applications, which allow biologists to find
homologues of an input sequence in DNA and pro-
tein sequence libraries. BLAST is an example appli-
cation that has been enhanced as a Web source that
provides dynamic access to large data sets. Many
genomics laboratories provide a Web-based BLAST
interface [15, 9] to their sequence databases that al-
low scientists to easily identify homologues of an in-
put sequence of interest. This capability enhances
the genomics research environment by allowing sci-
entists to compare new sequences to every known
sequence and to have their work validated by other
members of the community. The addition of new se-
quences at an increasingly frequent rate [16, 14] fur-
ther increases the value of this capability.

Unfortunately, while the underlying program on
many of these sites is the same, there is no common
interface or data exchange mechanism for the estab-
lished BLAST sources currently on the Web. To per-
form a BLAST search against multiple sources, a sci-
entist must manually select the set of sites to query,
enter their query into each site, and integrate the re-
sults. The problems with this approach are numer-
ous: the scientist may not query the most relevant
sites for their search, the search must be entered mul-
tiple times, the results of the search must be merged
together by hand to obtain an integrated set of re-
sults, and if an interface changes or moves, the sci-
entist must ascertain where the new interface is and

how to query it appropriately.
Providing integrated access to BLAST Web

sources is a challenging but important problem in ge-
nomics. The major challenges are to locate new Web
sources, evaluate them to determine if they provide a
BLAST interface, construct a wrapper for the source,
and integrate the source into a mediator system that
can provide a single point of access to all known
sources conforming to the interface. Source auton-
omy complicates this problem: a cursory Web search
yields hundreds of sources that provide a BLAST in-
terface, many of which do not appear in bioinformat-
ics directories [5]. Manually maintaining a wrapper
library will not scale to accommodate the growth of
genomics data sources on the Web, challenging us
to produce an automated system that can find, clas-
sify, and wrap new sources without constant human
intervention. This paper presents our approach for
automatic classification of new Web sources into rel-
evance categories that eliminates the human effort
required to maintain a current repository of sources.
The contributions of this paper are:

� A specification for describing classes of Web
sources. These service class descriptions rep-
resent the salient features of the class concisely
while providing enough information to distin-
guish instances of the class from other sources.

� A practical, heuristic approach to classifying
arbitrary Web sources according to such a de-
scription.

This classification system is part of an ongoing re-
search effort to build an automated integration sys-
tem for Web sources. Our discussion in this paper
focuses on BLAST interfaces to concretely demon-
strate the approach, but these flexible techniques are
generic and can be easily applied to other domains.
In Section 2, we discuss existing research related to
our work. We examine our service description for-
mat in Section 3 and the automatic classification sys-
tem in Section 4. Section 5 describes our experimen-
tal evaluation using results obtained from applying
our techniques to a set of BLAST sequence search
services on the Web. As part of this discussion, we
identify characteristics of sources that our prototype

1



cannot currently handle, which form the focus of on-
going work. We conclude with an examination of
this work and future research opportunities.

2 Related Work

Our work is inspired by the ShopBot agent [6] whose
purpose is to assist users in the task of online shop-
ping. ShopBot uses the concept of a domain de-
scription that lists useful attributes about the services
in question. The authors addressed the problems
of learning unknown vendor sites and integrating a
set of learned sources into a single interface. Our
present work addresses the related problem of auto-
matically classifying services from an arbitrary set
of sites. The service class description format we de-
scribe provides greater descriptive power than Shop-
Bot’s domain descriptions and can specify complex
data types and source control flow information.

Related to this work is the problem of heteroge-
neous data source integration. There are several re-
search and commercial systems for querying hetero-
geneous data sources. Zadorozhny et al. [18] de-
scribe a wrapper and mediator system for limited-
capability Web sources that includes query plan-
ning and rewriting capabilities. Information Mani-
fold [12] targets the myriad Web interfaces to gen-
eral purpose data, using a declarative source descrip-
tion for these sources combined with a set of query
planning and optimization algorithms. The TSIM-
MIS [3] system provides mechanisms for describing
and integrating diverse data sources while focusing
on assisting humans with information processing and
integration tasks.

Researchers have also examined heterogeneous
data integration in the domain of biological data.
DiscoveryLink [10] provides access to wrapped data
sources and includes query planning and optimiza-
tion capabilities. Eckman et al. [7] present a simi-
lar system with a comparison to many existing re-
lated efforts. BioKleisli [4] provides access to com-
plex sources with structured data but does not include
query optimization.

Our goal is to construct a system that can auto-
matically discover and integrate bioinformatics Web
sources. We seek to unify a class of sources such as
BLAST behind a single interface that will maintain

a current set of sources without manual intervention.
This paper considers the classification aspect of this
problem, which the above systems do not address.
We expect that many of the techniques used by me-
diation systems will directly apply to the integration
portions of our project.

Automatic discovery of Web sources apropos to a
particular domain involves locating sources and de-
termining their relevance to the domain; this paper
addresses the second problem. Locating sources in
the context of the Web typically involves a crawler
that treats sites as nodes in a graph connected by hy-
perlink edges. Starting from a set of root pages, a
crawler traverses the graph in some order specific
to its goals and processes the sites it encounters.
Part of this process involves extracting new hyper-
links to crawl from the encountered sites. While
simple on the surface, Web crawling presents sev-
eral research and implementation challenges, many
of which have been addressed in the literature and
commercially [2, 13, 11]. There is active research
into topic driven or focused crawlers; Srinivasan et
al. [17] present such a crawler for biomedical sources
that includes a treatment of related systems.

3 Service Class Descriptions

Our approach to discovery and classification of Web
sources groups sources into service classes that share
common functionality but not necessarily a common
interface. Service classes are specified by a service
class description, which is an XML description for-
mat that defines the relevant aspects of a category of
Web sources from an application’s perspective. The
service class description format addresses several de-
sign challenges that explicitly target the source dis-
covery problem and provides a general description
of the type of source that is considered interesting. It
defines the data types used to build the source’s inter-
face as well as any intermediate types that may ap-
pear in a source. It establishes the interface used by
source class members and outlines intervening con-
trol points. Finally, the description lists examples
that are employed during source evaluation.

The description provides a mechanism for encap-
sulating the important components of a particular
source that are common to all members of the class

2



and is the mechanism for hiding insignificant differ-
ences between individual sources. We expect that
service class descriptions will be crafted in conjunc-
tion with domain scientists interested in utilizing au-
tomatic source discovery for their own application
areas. This frees each user to determine the impor-
tant characteristics of their domain and customize the
search according to their individual requirements.

The description format allows a class to be de-
scribed generically while providing enough informa-
tion to differentiate between a set of arbitrary Web
sources. A further requirement is that service classes
be straightforward to create, although this can be ful-
filled by the creation of a graphical description con-
struction tool. The service class description format
has been designed to meet these requirements while
allowing descriptions to be tailored to the particular
needs of the application domain.

3.1 Types

The first component of a service class description
specifies the data types that are used by members of
the service class. Types in this context are analogous
to those in programming languages. They are used
to describe the input and output parameters of a ser-
vice class and any data elements that may be required
during the course of interacting with a source. The
service class type system is modeled after the XML
Schema [8] type system and includes constructs for
building atomic and complex types. Atomic types
are simple valued data elements such as strings and
integers. The type system provides several built in
atomic types that can be used to create user-defined
types defined by restriction. The DNASequence
type in Figure 1 is an example of an atomic type de-
fined by restriction in the nucleotide BLAST service
class description.

Atomic types can be composed into complex
types, which are formed by composition of basic
types into larger units. Figure 1 shows the specifi-
cation of a nucleotide BLAST alignment sequence
fragment, which is a string similar to:

Query: 280 TGGCAGGCGTCCT 292

The above string in a BLAST result would be rec-
ognized as an AlignmentSequenceFragment

<type name="DNASequence"
type="string"
pattern="[GCATgcat-]+" />

<type name="AlignmentSequenceFragment" >
<element name="AlignmentName"

type="string"
pattern="[:alpha:]+:" />

<element type="whitespace" />
<element name="m"

type="integer" />
<element type="whitespace" />
<element name="Sequence"

type="DNASequence" />
<element type="whitespace" />
<element name="n"

type="integer" />
</type>

Figure 1: Some nucleotide BLAST type definitions.

and annotated as such for later analysis.
Composition of elements into complex types can

be in the form of a simple sequence of elements, such
as the AlignmentSequenceFragment defini-
tion. List definitions are also allowed using the
constraints minOccurs and maxOccurs, which
define the expected cardinality of a particular sub-
element within a type. The choice operator allows
types to contain a set of possible sub-elements from
which one will match.

3.2 Control Flow

Although all members of a service class provide
similar functionality, the mechanics of different
Web sources are virtually unconstrained. nucleotide
BLAST sites provide interfaces ranging in complex-
ity from a single input parameter for the sequence to
sites having multiple input parameters spread across
several pages and several stages of results. Further,
when evaluating a given site, an automatic discovery
agent will not know a priori if the site is a member
of the given service class; if it is not, the agent may
spend considerable effort wandering through a com-
plicated workflow on an unrelated source.

To confront this problem, the service class de-
scription format provides syntax for enumerating the
expected navigational paths used by members of the
service class. This control flow graph consists of a

3



set of states connected by edges. Each state has an
associated type; data from a Web source against the
type associated with the control flow states to deter-
mine the flow of execution of a source from one state
to another. Our nucleotide BLAST service class de-
scription, for example, has a single start state that
defines the type of start page a class member must
contain: in this case, any member of the nucleotide
BLAST service class must have a start page that in-
cludes an HTML form with at least one text entry
field.

3.3 Examples

The final component of the service class description
is the examples. Examples contain input arguments
and can be executed against an instance of the ser-
vice class. While not strictly necessary for articu-
lating a service class, the examples play an impor-
tant role during analysis of a source. An example
can be used to check if a site accepts input as re-
quired by the service class. The examples may also
include negative or null queries that are expected to
produce no results. Negative queries are useful for
both validation purposes and for differentiating be-
tween data elements and template or style informa-
tion in a source’s responses.

Figure 2 shows an example used in a nucleotide
BLAST description that illustrates the components
of an example argument. The attribute required
states whether an argument is a required input for all
members of the service class. In this case, all mem-
bers of the nucleotide BLAST service class are re-
quired to accept a DNA sequence as input. The argu-
ment lists the type of the input as well as a value that
is used during classification. The optional hints
section of the argument supplies clues to the site
classifier that help select the most appropriate input
parameters on a Web source to match an argument.
This example also includes an argument for the pro-
gram type, which is specified as an optional argu-
ment since some BLAST sources do not have a pro-
gram selector input.

The argument hints specify the expected input pa-
rameter type for the argument and a list of likely form
parameter names the argument might match. Multi-
ple name hints are allowed, and each hint is treated

<example>
<arguments>

<argument required="true">
<name>sequence</name>
<type>DNASequence</type>
<hints>
<hint>sequence</hint>
<inputType>text</inputType>

</hints>
<value>TTGCCTCACATTGTCACTGCAAAT

CGACACCTATTAATGGGTCTCACC
</value>

</argument>

<argument required="false">
<name>BlastProgram</name>
<type>string</type>
<hints>
<hint>program</hint>

</hints>
<value>blastn</value>

</argument>
</arguments>

<result type="SummaryPage" />
</example>

Figure 2: A nucleotide BLAST example.

as a regular expression to be matched against the
form parameters. These hints are written by the ser-
vice class description writer using their observation
of typical members of the service class. For exam-
ple, a DNA sequence is almost always entered into a
text input parameter, usually with “sequence” in its
name. The DNA Sequence argument in a nucleotide
BLAST service class would therefore include a name
hint of “sequence” and an input hint of “text.”

4 Source Classification

Once a service class description has been defined, an
automatic discovery agent can begin identifying Web
sources of interest. This process encompasses two
steps: locating sources and determining if they are
instances of a service class. We have concentrated on
the issue of identifying members of the service class.
Specifically, given an arbitrary Web site and a service
class description, we determine if the Web site is a
Web source conforming to the interface defined by
the description.

4



Analysis of the site starts with the control flow
graph,which anchors the classification to the subset
of input types specified as start points for this service
class. Each node in the graph is treated as a state in
an automaton: a match against a source at the current
state allows the analysis to proceed to a connected
state. The service classifier begins the analysis of a
Web source by attempting to match the start page of
the source against one of the start nodes in the control
flow graph. If no matches are found, the source can-
not match the service class and is discarded. If the
start page matches, the classifier generates a series
of queries using the examples provided in the ser-
vice class description. For each response, the clas-
sifier then follows the outbound links and tests the
responses of the source against the possible states in
the control graph. This process continues until the
site matches against one of the end states in the con-
trol flow graph or there are no more possible queries
to try. The current prototype implementation of this
source classifier is limited to simple control graphs
consisting of a start state and end state only; enhanc-
ing the prototypes processing capabilities is a focus
of ongoing work.

The output of the analysis and classification pro-
cess states whether the input Web source matched the
service class. If the site is a match, the classifier also
lists the steps used at each control state to produce
the result. This output includes information about
the meaning of form parameters in the source along
with the values used for each parameter.

Figure 3 shows part of this process visually. The
control flow graph for a nucleotide BLAST service
appears at (a) while (b) shows a representation of the
control flow of a typical nucleotide BLAST source.
In the graphs, start and end states are represented
with circles and diamonds respectively, while inte-
rior points are shown with squares. The type associ-
ated with each state is listed inside it: t � ) nucleotide
BLAST Input, t � ) formatting and query status, t � ) nu-
cleotide BLAST Result Summary, and t � ) nucleotide
BLAST Empty Result. If the Web source’s start page
(s) does not match the type of this control graph’s
start state (t � ), the classifier returns a negative result.
If the start page matches, the classifier uses the ex-
amples to query the site, which returns its result (e).
If this result is a nucleotide BLAST Result Summary

ta

tb

tc td

s

e

a. b.

Figure 3: Control Flow Graph for a nucleotide
BLAST service (a) with potential Web source match
(b).

or Empty Result, the type will match one of the end
states (t � ) or (t � ). In this case, the classifier returns
a positive result with the details needed to execute a
query against the site. Note that although the state
graph for the Web source is shown in Figure 3b, the
service classifier will not know the control graph for
the source beforehand. A significant part of the clas-
sifier’s task is to infer this state graph using the at-
tempted queries.

4.1 Query Generation

Generating queries with which to test a candidate
service class member is a significant challenge when
analyzing a Web source but is vital to verify whether
the source is an instance of the service class. By
probing a source using a variety of queries, differ-
ent paths in the control flow graph can be explored to
produce the subset of the control graph that models
the source. Without generating queries with which
to test a source, an analyzer could do little more than
examine the source’s form interfaces, which reveal
very little about the nature of the underlying source.
The query generator must take the examples from the
service class description and produce a set of test
queries that matches each argument in an example
with a parameter in the sources’s forms. Assume that
a given source contains a set of forms

�
, where each

form ���	� �
has a set of parameters 
�� . The num-

ber of possible queries � for an example can be esti-

5



mated as � � ����� ����
�	��


� � 
 � �
��
where 
 is the number of arguments in the example.
Exhaustive search of the query space is clearly unde-
sirable for sites with even a small number of form
parameters: executing every query takes a signifi-
cant amount of time and network bandwidth and is
not likely to please the maintainers of the site being
analyzed.

To combat these problems, we have developed a
set of simple heuristics for choosing a small subset of
� to test that, despite their simplicity, work well for
quickly determining class membership of real Web
sources. These heuristics are based on four key ob-
servations:

1. Form parameters have type information

2. Parameters tend to be named purposefully

3. Parameters tend to have reasonable defaults

4. Output has common, recognizable components

Although HTML is not a data definition language,
the parameters in a form reveal something about their
expected values via their input tag’s type attribute.
Knowing that a particular parameter is a radio but-
ton limits the range of values that can be placed in it.
The parameters also reveal something of their pur-
pose by way of their name: on the overwhelming
majority of sites used in our experiments, the name
of the sequence input parameter contained the word
“sequence.” Many of the sites we examined expose
a large subset of the options available to the BLAST
program in there forms, but most of these parameters
are set to default values that can be ignored without
affecting a source’s ability to produce results. The
output format of the tested sources uses a consistent
alignment format that can be recognized even when
embellished with additional data.

Figure 4 displays the query generation process. A
query enumerator combines the components from a
service class description with the forms from a Web
source. The output of the combination is a set of
queries; the set contains a query for all pairings of
the example’s arguments with each parameter in all

Service
Class

Processor

User
Agent
Library

Enumerator
Query

...

Class
Description

Service

Web
Service Forms

Types,
Control Graph,

Examples

Web Queries

Figure 4: Query generation process.

of the start page’s forms. Each query is then assigned
a score using a simple function that assigns points
to a query for each parameter that matches the hints
of its argument. Once a suitable ordering has been
constructed, the queries will be executed in priority
order until one leads to an end control state or there
are no more queries to execute.

5 Experimental Results

We have constructed a prototype of the source dis-
covery system described here to test the validity of
our approach. The prototype is implemented in Java
and can examine a set of supplied URLs or crawl the
Web looking for sources matching a description.

5.1 Methodology and Data

The data for our experiments consists of a list of 116
URLs that provide a BLAST interface that was gath-
ered from the results of a Web search. The sites vary
widely in complexity: some have forms with fewer
than 5 input parameters, while others allow minute
control over many of the options of the BLAST al-
gorithm. Some of the sources, including the BLAST
server at NCBI, include an intermediate step in the
query submission process. A significant minority
of the sources use JavaScript to validate user input
or modify parameters based on other choices in the
form. Despite the wide variety of styles found in
BLAST sources, our prototype is able to recognize
a large number of the sites using a service class de-
scription of approximately 150 lines.

6



Successfully Failed Sites Percent
Data Set Identified Indirection Processing Total Success
Initial test set 18 5 4 27 66.7%
Experimental set 60 5 22 87 68.9%

Table 1: Sites classified using the nucleotide BLAST service class description.

We reserved a small subset of the nucleotide
BLAST URLs for assisting the evaluation of the ser-
vice class description language and our prototype im-
plementation. The remainder of the sources were
used for experimental testing after the prototype im-
plementation was deemed ready. Sites that were
manually determined to be non-functional or that re-
turned results exclusively via email were excluded
from our experiments and do not appear as part of
the reported results.

5.2 Results

Table 1 shows the results of our experiments. The
test set is the set of Web sources that were tested re-
peatedly as the prototype matured and helped shape
its design. The remaining sources were categorized
once. Sites listed as successes are those that can
be correctly queried by the analyzer to produce an
appropriate result, either a set of alignments or an
empty BLAST result. An empty result indicates that
the site was queried correctly but did not contain any
homologues for the input sequence.

Failed sites are all false negatives that fall into two
categories: indirection sources and processing fail-
ures. An indirection source is one that interposes
some form of intermediate manual step between en-
tering the query and receiving the result summary.
For example, NCBI’s BLAST server contains a for-
matting page after the query entry page that allows a
user to tune the results of their query. Simpler indi-
rection mechanisms include intermediate pages that
contain hyperlinks to the results. We do not consider
server-side or client-side redirection to fall into this
category as these mechanisms are standardized and
are handled automatically by Web user agents. Rec-
ognizing and moving past indirection pages presents
several interesting challenges because of their free-
form nature. Incorporating a general solution to

complex, multi-step Web sources is part of our fu-
ture work.

6 Conclusion

It is clear that the World Wide Web is an important
tool for scientists and researchers. As the Web ma-
tures, we expect Web sources to continue proliferat-
ing while also adopting more robust data exchange
standards like XML and RDF. We have explored the
use of Web sources in the bioinformatics domain and
seen that the increased number of sources promises
greater research potential if the data management is-
sues can be overcome. Our approach to this prob-
lem combines an abstract service class description
with analysis techniques that map sources on the
Web back to that description. We have shown how
these concepts can be applied in an existing applica-
tion scenario, Web-based BLAST genome sequence
search. Finally, we have verified our claims experi-
mentally by using a BLAST service class description
to identify a group of Web sites.

Our initial results are very encouraging, as our cat-
egorization program consistently identified approxi-
mately two-thirds of the input URLs correctly. We
attribute this success to the regularity of the returned
data sets and the observed characteristics of Web
sources. Of course, these preliminary results leave
room for improvement. Many of the sources had
complex interfaces that are not yet recognized by
the prototype, which is limited to processing simple
control graphs as noted previously. The remaining
sources included sites that use JavaScript and a few
with quirky interfaces. The prototype presently sup-
ports a subset of the full JavaScript specification and
we are working to make our implementation more
compliant with standard Web browser behavior.

We are continuing development of new heuristics
for site processing and recognition. In particular, we

7



plan to expand the type handling system to iden-
tify such as indirection pages encountered during
BLAST searches. The system will also be extended
to support aggregation of data from hyperlinks—
e.g. gene summaries commonly found in BLAST re-
sults. Longer term work will examine applying exist-
ing and novel information retrieval techniques to in-
crease the number of recognized sources and further
improve performance. For example, an advanced
classification system could compare new sources to
those it has already classified: if the new source
matches a previously discovered source, the infor-
mation from the existing match can be used to guide
analysis of the new source.

8



References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Mey-
ers, and D. J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology,
215(3):403–410, October 1990.

[2] S. Brin and L. Page. The anatomy of a
large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–
7):107–117, 1998.

[3] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. D. Ullman,
and J. Widom. The TSIMMIS project: Integra-
tion of heterogeneous information sources. In
16th Meeting of the Information Processing So-
ciety of Japan, pages 7–18, Tokyo, Japan, 1994.

[4] S. B. Davidson, G. C. Overton, V. Tannen, and
L. Wong. BioKleisli: A digital library for
biomedical researchers. Int. J. on Digital Li-
braries, 1(1):36–53, 1997.

[5] DBCAT, The Public Catalog of Databases.
http://www.infobiogen.fr/services/dbcat/,
2002.

[6] R. B. Doorenbos, O. Etzioni, and D. S. Weld.
A scalable comparison-shopping agent for the
world-wide web. In W. L. Johnson and
B. Hayes-Roth, editors, Proceedings of the
First International Conference on Autonomous
Agents (Agents’97), pages 39–48, Marina del
Rey, CA, USA, 1997. ACM Press.

[7] B. Eckman, Z. Lacroix, and L. Raschid. Op-
timized seamless integration of biomolecu-
lar data. In IEEE International Conference
on Bioinformatics and Biomedical Egineering,
pages 23–32, 2001.

[8] D. C. Fallside. XML Schema Part 0: Primer.
Technical report, World Wide Web Con-
sortium, http://www.w3.org/TR/xmlschema-0/,
2001.

[9] W. Gish. BLAST. http://blast.wustl.edu/, 2002.

[10] L. Haas, P. Schwarz, P. Kodali, E. Kotlar,
J. Rice, and W. Swope. Discoverylink: A sys-
tem for integrating life sciences data. IBM Sys-
tems Journal, 40(2), 2001.

[11] A. Heydon and M. Najork. Mercator: A scal-
able, extensible web crawler. World Wide Web,
2(4):219–229, 1999.

[12] A. Y. Levy, A. Rajaraman, and J. J. Ordille.
Querying heterogeneous information sources
using source descriptions. In Proceedings of
the Twenty-second International Conference on
Very Large Databases, pages 251–262, Bom-
bay, India, 1996. VLDB Endowment, Saratoga,
Calif.

[13] R. Miller and K. Bharat. SPHINX: A frame-
work for creating personal, site-specific web
crawlers. In Proceedings of the Seventh Inter-
national World Wide Web Conference, 1998.

[14] National Center for Biotechnology
Information. GenBank Statistics.
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html,
2003.

[15] National Library of Medicine/National Insti-
tutes of Health. National Center for Biotech-
nology Information. http://www.ncbi.nih.gov/,
2002.

[16] NIAS DNA Bank. Growth of daily
updates of DNA Sequence Databases.
http://www.dna.affrc.go.jp/htdocs/growth/D-daily.html,
2003.

[17] P. Srinivasan, J. Mitchell, O. Bodenreider,
G. Pant, and F. Menczer. Web crawling
agents for retrieving biomedical information. In
Proceedings of the International Workshop on
Agents in Bioinformatics (NETTAB-02), 2002.

[18] V. Zadorozhny, L. Raschid, M.-E. Vidal,
T. Urhan, and L. Bright. Efficient evaluation of
queries in a mediator for websources. In Pro-
ceedings of ACM/SIGMOD Annual Conference
on Management of Data, 2002.

9


